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1 Introduction

Surface operators in gauge theories are natural generalisations of the Wilson and ’t Hooft

operators (which are based on curves/lines). Surface operators were almost completely

overlooked for a long time. Part of the reason was that there were no clear applications

of such operators as compared to the more well-known Wilson and ’t Hooft operators.

Recently Gukov and Witten initiated a study of surface operators [1] (see also [2] for a short

review and references). Although the discussion in [1] is carried out for a specific gauge

theory (N = 4 super-Yang-Mills) with a specific application in mind, surface operators are

expected to be a generic feature in gauge theories.

The N = 4 supersymmetric Yang-Mills theories may well be the simplest (gauge) quan-

tum field theories in 3 + 1 dimensions. These theories have a large number of symmetries

and special features. One such symmetry is the mysterious S-duality symmetry.

The S-duality conjecture [3] for the N = 4 supersymmetric four-dimensional Yang-

Mills theories states that the theory with gauge group G and a value of the complexified
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coupling constant τ = θ
2π

+ i
g2

YM

, where θ is the theta angle and gYM is the Yang-Mills

coupling constant, is equivalent to the theories arising from the transformations S and T :

S : (G, τ) → (G∨,−1/rτ) ,

T : (G, τ) → (G, τ + 1) , (1.1)

where G∨ denotes the dual group of G [4] and r is the ratio of the lengths-squared of the

long and short roots of the Lie algebra of G (see e.g. [5] for a recent discussion). For the

simple groups with simply-laced Lie algebras, G∨ and G are equal at the Lie algebra level.

However, this is not true for all groups. Some examples of S-dual pairs, that will be studied

further in this paper, are:

G G∨ C

Spin(2n+1) Sp(2n)/Z2 Z2

Sp(2n) Spin(2n+1)/Z2 ≡ SO(2n+1) Z2

SO(2n) SO(2n) Z2 .

(1.2)

Here C denotes the centre of the group G.

The S-duality conjecture is well established, but has not been proven, and it is in

general difficult to devise tests of the conjecture. One common strategy is to look for

objects that are independent of the coupling constant and hence should have a counterpart

in the dual gauge theory.

In a recent paper [6] Gukov and Witten extended their earlier analysis of surface

operators and identified a subclass of surface operators in the N = 4 super-Yang-Mills

theories which preserve half the supersymmetries and have the property that they are rigid

(which essentially means that they can not be changed by an adiabatic change of τ). Rigid

surface operators therefore provide a class of operators that are expected to be closed

(i.e. related to each other) under S-duality. (S-duality properties of other classes of surface

operators have been studied in [1, 7].)

It was shown in [6] that the rigid surface operators are of two types: unipotent and

semisimple. The rigid semisimple surface operators in the theories with gauge groups SO(n)

and Sp(2n) are labelled by pairs of certain partitions. Unipotent rigid surface operators

arise in the limit when one of the two partitions is empty.

Partitions have also appeared in other recent works on S-duality [8, 9]. These works

have in common that they count quantum states. For such states one can have quantum-

mechanical state mixing which complicates the search for an S-duality map. Therefore

in [8, 9] only the total number of states with certain quantum numbers were counted.

The rigid surface operators on the other hand appear not to suffer from such quantum

ambiguities and it therefore makes sense to look for an S-duality map, mapping a rigid

surface operator in the theory with gauge group G into a rigid surface operator in the theory

with gauge group G∨. In [6] the search for such an S-duality map was begun and some

proposals for the S-duality map relating rigid surface operators in the Bn (SO(2n+1)) and

Cn (Sp(2n)) theories for low ranks were made. A certain special subclass of unipotent rigid

surface operators was also argued to be closed under S-duality. In addition, a problematic
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mismatch in the total number of rigid surface operators in the Bn and Cn theories was

pointed out.

In this paper we attempt to extend the analysis begun in [6]. In particular, we make

several proposals for how the S-duality map should act on certain classes of rigid surface

operators in the N = 4 Bn and Cn theories. We also make some comments and proposals

for the Dn (SO(2n)) theories.

In the next section we review the construction of rigid surface operators given in [6] and

discuss some mathematical results and definitions that will be needed in later sections. We

also discuss certain invariants of the surface operators, i.e. expressions that are expected to

be unchanged under the S-duality map. In particular, we review the invariants proposed

in [6] and also propose a new invariant, which is closely related to ‘fingerprint’ invariant

discussed in [6]. Then in section 3 we discuss rigid surface operators in the Bn and Cn

theories and make several proposals for how the S-duality map should act on certain classes

of surface operators. In particular, we make a proposal for how the S-duality map should

act on unipotent rigid surface operators. We also discuss semisimple surface operators

and the mismatch of the total number of rigid surface operators and try to find a way to

characterise the problematic surface operators. Finally, in section 4 we briefly discuss the

Dn theories and make a proposal for how the S-duality map should act on unipotent rigid

surface operators and also discuss a class of semisimple surface operators. In the appendix

we tabulate, as an example, all rigid surface operators and their associated invariants in

the SO(13) and Sp(12) theories.

2 Surface operators in N = 4 super-Yang-Mills

The N = 4 super-Yang-Mills theory is a four-dimensional gauge theory with gauge group

G and the following field content: a gauge field (1-form), Aµ (µ = 0, 1, 2, 3), four Majorana

spinors ψa (a = 1, 2, 3, 4) and six real scalars, φI (I = 1, . . . , 6). All fields take values in

the adjoint representation of the gauge group.

Surface operators are generalisations of the Wilson and ’t Hooft operators in gauge

theories. Instead of being localised on a one-dimensional submanifold they are localised

on a two-dimensional surface. The definition of surface operators in [1, 6] involves a gen-

eralisation of the definition of ’t Hooft operators (see also [10] and references therein for a

discussion of various ways to define surface operators).

A surface operator is defined by prescribing a certain singularity structure of the gauge

(and scalar) fields near the surface on which the operator is supported. We only consider

surface operators supported on a R
2 submanifold (denoted D) of flat four-dimensional

space. The surface D is taken to lie at x2 = x3 = 0 and the gauge 1-form in the directions

normal to the surface is A = A2 dx2 + A3 dx3. To preserve half of the supersymmetries,

the full SO(6) R symmetry group can not be unbroken. By selecting two of the six scalars

in the N = 4 super-Yang-Mills theory (φ2 and φ3 say) and forming φ = φ2 dx2 + φ3 dx3,
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the conditions for preserving half of the supersymmetries can be written [6]

F − φ ∧ φ = 0 ,

dφ+A ∧ φ+ φ ∧A = 0 , (2.1)

d ⋆φ+A ∧ ⋆φ+ ⋆φ ∧A = 0 ,

where F = dA + A ∧ A as usual. The equations (2.1) are known as Hitchin’s equations.

A solution to these equations with a prescribed singularity along the surface D defines a

surface operator.

Up to gauge transformations the most general rotation-invariant Ansatz for A and φ

is (here x2 + ix3 = reiθ)

A = a(r) dθ ,

φ = c(r) dθ + b(r)
dr

r
, (2.2)

⋆φ = −b(r) dθ + c(r)
dr

r
.

Inserting this Ansatz into (2.1) and defining s = ln r one finds that (2.1) reduce to

Nahm’s equations:

da

ds
= [b, c] ,

db

ds
= [c, a] , (2.3)

dc

ds
= [a, b] .

If one is interested in conformally invariant surface operators one naively expects that scale

invariance would require that a, b, c have to be independent of s (r). Nahm’s equations then

imply that the constant elements a, b and c need to mutually commute. Surface operators

of this type were treated in [1]. The new insight in [6] was to point out another way to

obtain conformally invariant surface operators.

Nahm’s equations (2.3) are solved by

a =
Tx

s+ 1/f
, b =

Tz

s+ 1/f
, c =

Ty

s+ 1/f
, (2.4)

provided that

[Tx, Ty] = Tz et cycl. (2.5)

i.e. the Ti’s span a representation (in general reducible) of the su(2) Lie algebra. The Ti’s

also have to belong to the adjoint representation of the gauge group.

It would seem that the surface operator obtained from the solution (2.4) depends on f

(for a fixed f). However, in [6] it was argued that one should think of f as being allowed to

fluctuate. Then provided certain additional constraints (to be discussed below) are fulfilled,

the resulting surface operator does not depend on any parameters and therefore has to be

scale invariant. It is expected that it is in fact also superconformal.
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Another way to characterise the surface operators can be obtained by considering the

conjugacy class (orbit under gauge conjugation) of the monodromy

U = P exp

(∮

A

)

, (2.6)

where A = A + iφ and the integration is around a circle with constant r, near r = 0.

Note that U belongs to the complexified gauge group and the conjugacy class is therefore a

conjugacy class in the complexified gauge group. Note also that F = dA+A∧A = 0, which

follows from (2.1) and means that U is unchanged under deformations of the integration

contour. For the solution (2.4) U becomes

U = P exp

(
2π

s+ 1/f
T+

)

, (2.7)

where T+ ≡ Tx + iTy is nilpotent (strictly upper (or lower) triangular in matrix language).

A conjugacy class of this type is called unipotent (the corresponding Lie algebra orbit is

called nilpotent).

The above construction of surface operators does not exhaust all possibilities [6]. This

can be seen by noting that there are two types of conjugacy classes in a Lie group: unipo-

tent and semisimple. Above we only discussed unipotent classes. However, semisimple

classes can also lead to rigid surface operators. The above discussion can be modified

to incorporate semisimple conjugacy classes using the following construction. Consider a

semisimple (diagonalisable in matrix language) element S of the gauge group and require

that near the surface D,

SΥ(r, θ)S−1 = Υ(r, θ + 2π) , (2.8)

for all adjoint-valued fields Υ in the theory. This effectively breaks the gauge group to the

centraliser of S (i.e. all group elements which commute with S). One can combine this with

the above construction by looking for a solution to Nahm’s equations which in addition

also satisfies, near r = 0, the restriction arising from S, (2.8). At the level of conjugacy

classes this combination of the two constructions means that one considers more general

monodromies of the form V = SU , where S is semisimple and U is unipotent.

From the above discussion we see that what is needed to find the possible surface

operators is a classification of unipotent and semisimple conjugacy classes. In general the

construction of surface operators from conjugacy classes leads to a large variety of surface

operators not all of which are expected not to depend on any parameters and to have a

simple behaviour under S-duality. What is needed is a criteria which can be used to decide

when a surface operator is ‘rigid’.

Nilpotent orbits (unipotent conjugacy classes) have been classified by mathematicians.

A nilpotent/unipotent orbit whose dimension is strictly smaller than that of any nearby

orbit is called rigid. All rigid orbits have been classified (see [6] and section 7 of [12] for

further details). This result will be reviewed for the classical groups in the next subsection.

There exist semisimple conjugacy classes which have the property that the centraliser

(unbroken gauge group) of such a class is larger than that of any nearby class (such classes
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are called isolated in the mathematics literature, see e.g. [13], section 2). The possible

isolated classes S were obtained in [6] (see also section 4.1.2 in [13]); for the classical

groups, this result will be reviewed in the next subsection.

Surface operators based on monodromies of the form V = SU , where S is semisimple

and isolated and U is unipotent and rigid will be called rigid and are expected to be

superconformal and not to depend on any parameters and to have a simple behaviour

under S-duality. The classification of rigid surface operators in the theories with classical

gauge groups will be discussed in the next subsection.

In [6] a distinction is made between strongly rigid and weakly rigid surface operators.

Throughout this paper we will only consider strongly rigid operators which we for simplicity

simply refer to as rigid surface operators. The larger class including also the weakly rigid

surface operators could possibly be useful in resolving some of the unsolved problems.

2.1 Some mathematical definitions and results

We saw above that rigid surface operators correspond to certain (unipotent and semisim-

ple) conjugacy classes of the (complexified) gauge group. We summarise below the main

mathematical results and definitions that will be needed in this paper. A readable mathe-

matics reference is [12]. We will describe in detail the rigid surface operators in the theories

with classical gauge groups. Since the An series does not have any non-trivial rigid surface

operators we will concentrate on the Bn, Cn and Dn series.

It is always possible to choose a block-diagonal basis for T+ (cf. (2.7)),

T+ =






T n1

+
. . .

T nl

+




 , (2.9)

where T nk

+ is the ‘raising’ generator of the nk-dimensional irreducible representation of

su(2). For the An series (i.e. SU(n+1) gauge groups) the above argument gives the complete

solution, but for the other classical groups, i.e. Bn (SO(2n+1)), Cn (Sp(2n)) and Dn

(SO(2n)), there are restrictions on the allowed dimensions of the su(2) irreps arising from

the requirement that T+ should belong to the relevant gauge group. This problem has

been solved by mathematicians; see also [11] for a discussion in the Physics literature (the

authors of this publication were unaware of the fact that the problem had been solved

by mathematicians decades earlier). The unbroken gauge Lie algebra (i.e. the subalgebra

commuting with the su(2) generators) has also been worked out.

For SO(n) (Sp(2n))
∑l

k=1 nk equals n (2n) and the restrictions on the building blocks

(su(2) irreps) and unbroken Lie algebra are summarised in table 1.

From the block-decomposition (2.9) we see see that unipotent (nilpotent) surface op-

erators are classified by partitions. The fact that not all su(2) representations are allowed

means that the classification involves restricted partitions.

A partition λ of the positive integer n is a collection of positive integers, λi, (the parts

of the partition) such that
∑l

i=1 λi = n. We use the convention that λ1 ≥ λ2 ≥ · · · ≥ λl.

The integer l (the number of parts of the partition) is called the length of the partition.
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Gauge group Allowed su(2) representations gauge enhancement

Sp(2n) 2m odd-dimensional irreps sp(2m)

m even-dimensional irreps so(m)

SO(n) 2m even-dimensional irreps sp(2m)

m odd-dimensional irreps so(m)

Table 1. Restrictions on allowed representations and gauge enhancement

Throughout this paper we use a short-hand notation to denote partitions. For instance

33241 corresponds to 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1. Partitions can be added in an obvious

way. If λ and κ are partitions then λ + κ is the partition with parts λi + κi. Partitions

are in a one-to-one correspondence with Young tableaux. For instance the partition 33241

corresponds to

(2.10)

An orthogonal partition is a partition where all even integers appear an even number of

times. A symplectic partition is a partition for which all odd integers appear an even

number of times. An orthogonal (symplectic) partition is called rigid if it has no gaps

(i.e. λi−λi+1 ≤ 1 for all i) and no odd (even) integer appears exactly twice. Rigid unipotent

surface operators in the Bn and Dn theories are in one-to-one correspondence with rigid

orthogonal partitions of 2n+1 and 2n, respectively. Rigid unipotent surface operators in

the Cn theories are in one-to-one correspondence with rigid symplectic partitions of 2n.

(See [6] for more details.)

The transpose of a partition is the partition obtained by interchanging the roles of the

rows and columns of the Young tableau. For instance

( )t

= (2.11)

The transposed partition is again a partition, but if the original partition belongs to some

restricted class of partitions then the transposed partition may or may not belong to the

same class.

In the theories under consideration, a partition λ is called special if the following

condition holds

Bn : λt is orthogonal ,

Cn : λt is symplectic , (2.12)

Dn : λt is symplectic .

In particular, these definitions imply that for the Bn case all rows in the Young tableau

corresponding to a rigid special partition have to be odd, whereas for the Cn and Dn cases

all rows in the Young tableau corresponding to a rigid special partition have to be even.

A partition is called rather odd if any odd integer appears at most once.

– 7 –
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For the Bn , Cn and Dn theories it has been proven [6, 13] that the possible isolated

semisimple conjugacy classes (cf. discussion above) correspond to diagonal matrices, S,

with the only allowed elements along the diagonal being +1 and −1. The possible matrices

S break the gauge group in the following way (at the Lie algebra level)

so(2n+1) → so(2k+1) ⊕ so(2n− 2k) ,

sp(2n) → sp(2k) ⊕ sp(2n− 2k) , (2.13)

so(2n) → so(2k) ⊕ so(2n− 2k) .

It then follows that the rigid semisimple surface operators in the Bn , Cn and Dn theories

correspond to pairs of partitions in the following way [6]. In the Bn case a rigid semisimple

surface operator is labelled by a pair of partitions (λ′;λ′′) where λ′ is a rigid Bk partition

and λ′′ is a rigid Dn−k partition. For the Cn theories a rigid semisimple surface operator

is labelled by a pair of partitions (λ′;λ′′) where λ′ is a rigid Ck partition and λ′′ is a rigid

Cn−k partition (and k ≥ ⌊n
2 ⌋, where ⌊·⌋ denotes the integer part). Finally, for the Dn

theories a rigid semisimple surface operator is labelled by a pair of partitions (λ′;λ′′) where

λ′ is a rigid Dk partition and λ′′ is a rigid Dn−k partition (and k ≥ ⌊n
2 ⌋). (In all the above

theories, the rigid unipotent surface operators arise as a limiting case when λ′′ = 0.)

The Weyl group of a simple Lie group (algebra) is a finite group of particular impor-

tance. For the Weyl group corresponding to a classical group, both its conjugacy classes1

and unitary representations are in one-to-one correspondence with certain partitions. For

the An case both the set of conjugacy classes and the unitary representations are in one-to-

one correspondence with the set of partitions of n+1. For the Bn and Cn theories (whose

Weyl groups are isomorphic) both conjugacy classes and irreducible unitary representa-

tions are in one-to one correspondence with ordered pairs of partitions [α;β] where α is a

partition of nα and β is a partition of nβ, such that nα + nβ = n. For the Dn case there

is also a correspondence with pairs of partitions [α;β] where again nα + nβ = n. However,

in this case there are some further refinements, but as these will not play a role in this

paper we will not describe them here. Finally, we mention that even though the conjugacy

classes and unitary representations are parameterised by the same set of elements there is

no canonical isomorphism between the two sets (except for the An case).

There exist relations (maps) between the unipotent conjugacy classes (nilpotent orbits)

of a simple group and its Weyl group. The Kazhdan-Lusztig map is a (in general non-

bijective) map from the unipotent conjugacy classes to the set of conjugacy classes of

the Weyl group. The Springer correspondence is a (injective) map from the unipotent

conjugacy classes to the set of unitary representations of the Weyl group. For the classical

groups these maps can be described explicitly in terms of partitions. The simplest case is

An for which both the Kazhdan-Lusztig map and the Springer correspondence are given

by the identity map.

1Recall that a conjugacy class, [h], comprises all elements obtained from h by conjugation by a group

element i.e. all elements of the form ghg−1. Any element of the group belongs to precisely one conjugacy

class. It is a known fact that any finite group has a certain number of conjugacy classes and an equal

number of unitary representations.

– 8 –



J
H
E
P
0
5
(
2
0
0
9
)
1
2
5

The Kazhdan-Lusztig map can be extended to the case of rigid semisimple conjugacy

classes using a result due to Spaltenstein [14]. (As the Kazhdan-Lusztig map for the

unipotent conjugacy classes is a special case of this construction we will not describe it

separately.) Recall from the above discussion that the rigid semisimple conjugacy classes

are described by pairs of partitions (λ′;λ′′) and that the conjugacy classes of the Weyl group

are described by pairs of partitions [α;β]. What is needed is therefore a map between these

two classes of objects. Such a map can be explicitly constructed as follows. Start by adding

the two partitions: λ = λ′ + λ′′. Then form the symplectic partition µ = Sp(λ) where the

function Sp is defined as follows. The parts of µ = Sp(λ) are given by

µi = Sp(λ)i =

{

λi + pλ(i) if λi is odd and λi 6= λi−pλ(i) ,

λi otherwise .
(2.14)

where pλ(i) = (−1)
P

i

k=1
λk . The effect of this operation is to ensure that the odd parts of

the resulting partition never occur an odd number of times, i.e. the resulting partition is

symplectic. As an example, if λ = 762 53 22 1 then Sp(λ) = 64 52 22.

The next step is to define the function τ from the positive integers to ±1 in the following

way. For the Bn and Dn cases τ(m) is −1 if m is even and there exists at least one µi such

that µi = m and either of the following three conditions is satisfied

(i) µi 6= λi ,

(ii)
∑i

k=1 µk 6=
∑i

k=1 λk ,

(iii)SO λ′i is odd .

(2.15)

In all other instances τ is 1. For Cn the definition is the same except that condition (iii)SO

is replaced by

(iii)Sp λ′i is even . (2.16)

Finally construct a pair of partitions [α;β] as follows. For each pair of parts of µ both equal

to a and such that τ(a) = 1 retain one part a. From the integers so obtained form the

partition α. For each part of µ of size 2b such that τ(2b) = −1 retain b. From the integers

so obtained form the partition β. The resulting pair of partitions [α;β] corresponds to a

conjugacy class of the Weyl group. See [14] for more details. As an example, (λ′;λ′′) =

(3 22 14; 3 22 13) is mapped to [α;β] = [4 ; 3 13].

To describe the Springer correspondence for the classical groups it is convenient to use

certain symbols introduced by Lusztig. This construction is described in section 10 of [12].

We briefly recall the main results here.

In the Bn case start by adding l− k (where l is the length of the partition) to the kth

part of the partition. Then split the result into two sets: one containing the even parts and

one containing the odd parts. Arrange the odd parts in an increasing sequence and write

them as 2fi+1 (starting with f1). Similarly, write the even parts as 2gi and arrange them

in an increasing sequence (starting with g1). Next form αi = fi − i+ 1 and βi = gi − i+ 1.

Note that the number of αi’s is always one more than the number of βi’s. We then write

– 9 –
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the symbol as (

α1 α2 α3 · · ·

β1 β2 · · ·

)

. (2.17)

An example illustrates the method. The B10 partition λ = 33 24 14 has the symbol
(

0 0 1 1 1 1

1 1 1 1 2

)

. (2.18)

Viewing the two rows of the symbol as two partitions gives the Springer correspon-

dence, since the resulting pair of partitions corresponds to a unitary representation of

the Weyl group.

For the Cn theory the symbol is formed in an analogous way. If the length of the

partition is even, first append an extra 0 as the last part of the partition; if the length is

odd leave the partition unchanged. Then construct fi and gi as in the Bn case and form

αi = gi − i+ 1 and βi = fi − i+ 1. The number of αi is again one more than the number

of βi and the symbol is written as in (2.17). As an example the C10 partition λ = 32 26 12

has the symbol (2.18).

For the Dn theory one forms fi and gi exactly as in the Bn case. The difference as

compared to the Bn case is that now the number of fi and gi are equal. This means that

there are two ways to write the symbol. For reasons that will become clear we use the

definition αi = gi − i+1 and βi = fi− i+1, i.e. the opposite rule compared to the Bn case.

Conventionally one writes the symbol with two rows of equal length. However, since we

are only interested in rigid partitions which always have at least one part equal to 1 and

hence β1 = 0 we will omit this entry (and relabel β2 → β1 etc.) when writing the symbol

to ensure that the number of αi is one more than the number of βi just as in the Bn and

Cn cases. As an example the rigid D10 partition λ = 42 3 22 15 then has the symbol
(

1 1 2 2 2

0 0 0 2

)

. (2.19)

As mentioned above the map provided by the Springer correspondence is only injective.

There exists a way to extend it to a bijection. We will not describe this extended Springer

correspondence here as the relevance (if any) to surface operators is not clear.

The symbols as defined above provide an alternative characterisation of special par-

titions/surface operators. In the Bn and Cn theories a symbol is special if α1 ≤ β1 ≤

α2 + 1 ≤ β2 + 1 ≤ · · · . (The rigidity restriction can also be translated into the lan-

guage of symbols.) In the Dn theory a rigid symbol (defined as above) is special if

α1 ≤ β1 + 1 ≤ α2 + 1 ≤ β2 + 2 ≤ · · · .

A generalisation of the Springer correspondence to rigid semisimple conjugacy classes

will be discussed in the following subsection.

2.2 Invariants of surface operators: dimension, fingerprints and symbols

To investigate how the S-duality map acts on rigid surface operators it is very helpful to find

invariants of the surface operators, i.e. expressions which do not change under the S-duality
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map. In [6] it was pointed out that the most basic invariant of a (rigid) surface operator

is the dimension, d, of the associated orbit. This quantity is calculated as follows [6, 12]:

Bn : d = 2n2 + n− 1
2

∑

k(s
′
k)

2 − 1
2

∑

k(s
′′
k)

2 + 1
2

∑

k odd r
′
k + 1

2

∑

k odd r
′′
k ,

Cn : d = 2n2 + n− 1
2

∑

k(s
′
k)

2 − 1
2

∑

k(s
′′
k)

2 − 1
2

∑

k odd r
′
k − 1

2

∑

k odd r
′′
k , (2.20)

Dn : d = 2n2 − n− 1
2

∑

k(s
′
k)

2 − 1
2

∑

k(s
′′
k)

2 + 1
2

∑

k odd r
′
k + 1

2

∑

k odd r
′′
k .

Here s′k denotes the number of parts of λ′’s that are larger than or equal to k and r′k denotes

the number of parts of λ′ that are equal to k. The definitions of s′′k and r′′k are the same

with respect to λ′′.

In [6] another more refined invariant was also constructed. This invariant arose by con-

sidering the singular behaviour of the fields near r = 0. It was shown that the mathematical

description of this invariant is precisely the Weyl group conjugacy class associated with the

surface operator via the Kazhdan-Lusztig map. This means that the pair of partitions [α;β]

constructed from (λ′;λ′′) as in the previous subsection should not change under S-duality.

In [6] the Weyl group conjugacy class arising from the Kazhdan-Lusztig map was referred

to as the fingerprint of the surface operator; we will use this terminology throughout.

We now propose another invariant of rigid surface operators. This invariant is similar

to the fingerprints but is based on the Springer correspondence rather than on the Kazhdan-

Lusztig map.

The proposed invariant involves an extension of the Springer correspondence to rigid

semisimple conjugacy classes and is constructed as follows (a similar construction appears

in [13]). Calculate the symbols for both λ′ and λ′′ using the prescriptions given in the

previous subsection and then add the two results ‘from the right’, i.e. write the symbols right

adjusted and simply add the entries that are ‘in the same place’. An example illustrates

the addition rule:
(

0 0 0 0 0 1 1

1 1 1 1 1 2

)

+

(

0 0 0 1 1 1

1 1 1 1 1

)

=

(

0 0 0 0 1 2 2

1 2 2 2 2 3

)

. (2.21)

We refer to the resulting expression as the symbol of the surface operator.

It turns out that the symbol of a rigid surface operator contains the same amount

of information as the fingerprint in the sense that if two rigid surface operators have the

same symbols they also have the same fingerprints and vice versa. (We have not rigorously

proven this statement but we have checked it in many cases.) The fact that the symbol

is not an essentially new invariant is perhaps a bit disappointing but there are certain

advantages of the symbols compared to the fingerprints since they are easier to calculate

and their properties were quite useful in finding the S-duality maps we propose in later

sections. In particular, if one want to find all possible duals of a certain (rigid) surface

operator one simply looks at all possible ways of splitting the corresponding symbol into

two (rigid) symbols in the dual theory. There is always only a finite number of possibilities.

2.3 Invariants of surface operators: centre and topology

In [6] further discrete invariants were also constructed. We briefly recall the definitions

here. Given a surface operator corresponding to some V one can form ζ V where ζ is a
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non-trivial element of the centre of the gauge group. If these two expressions correspond

to two different surface operators then in the terminology of [6] one says that the surface

operator can detect the centre. However, if one can find a group element g such that

gV g−1 = ζ V then V and ζ V belong to the same conjugacy class and do not correspond

to different surface operators.

Unipotent (rigid) surface operators can always detect the centre [6]. For rigid semisim-

ple surface operators the situation is more involved. In the Bn case we should consider the

gauge group Spin(2n+1) with centre Z2 generated by −1. Since both the rigid partitions λ′

and λ′′ have at least one part equal to 1 (which corresponds to the trivial one-dimensional

su(2) representation) then in the projection to the SO(2n+1) theory V takes the form









1 · · ·
...

. . .

−1 · · ·
...

. . .









. (2.22)

Now this matrix lifts to V = γ2f(γ3, . . . , γ2n) in the Spin(2n+1) theory, where γi are the

usual gamma matrices: {γi, γj} = 2δij . This follows from the lifting

O(2) ∋

(

1 0

0 −1

)

→ γ2 ∈ Pin(2) . (2.23)

If we then do a gauge rotation with g = γ1γ2 we find gV g−1 = −V . This means that rigid

semisimple surface operators can never detect the centre in the Bn theory.

In the Cn theory (i.e. Sp(2n) with centre Z2 generated by −1), we note that if λ′ and

λ′′ have an odd-dimensional part (or a pair of even-dimensional parts) in common, then

these correspond to a block (

t+ 0

0 −t+

)

≡ t+ ⊗ σz , (2.24)

where t+ belongs to a single odd-dimensional su(2) representation (or a sum of even-

dimensional su(2) representations). In this case the symplectic unit acts inside t+ and

does not affect the 2 × 2 block structure. If we then do a gauge rotation which in the

relevant sector looks like g = 1l ⊗ σx we find that the above block (2.24) gets multiplied

by −1. Repeating this argument we see that if λ′ = λ′′ we can find a group element such

that gV g−1 = −V , which means that such surface operators can not detect the centre.

However, it appears that there are additional semisimple surface operators which can not

detect the centre.2 For the above argument to go through it looks to be sufficient that

the number of times a given odd-dimensional representation (or pair of even-dimensional

representations) appear in the two semisimple factors are equal mod 2 (subject also to

the condition that the representation(s) can not appear in only one of the two semisimple

factors). Surface operators in the Cn theory which fulfill this requirement seem not to be

2If true, this fact will lead to some puzzles in later sections; we therefore suspect that there is a fault in

the reasoning.
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able to detect the centre. For instance, if an odd-dimensional irreducible representation

appears three times in the first factor and once in the second we get a diagonal matrix

similar to (2.24) but with t+ appearing three times and −t+ once along the diagonal. If we

then perform the above gauge rotation in each of the the three 2× 2 subblocks containing

−t+ and one of the three t+ we find that the diagonal 4 × 4 matrix gets multiplied by an

overall −1.

In addition to the above construction based on the centre, a related quantity was also

introduced in [6]. This ‘topology’ quantity involves the homology groups π1(H) and π1(G)

(where G is the gauge group and H is the subgroup of G left unbroken by V ) rather than

the centre. We will not describe the construction here (see [6] for details); instead we only

give the criterion for when a surface operator can ‘detect topology’. In the Bn and Cn

theories the ‘detects/does not detect topology’ property is a Z2 quantum number just like

the ‘detects/does not detect the centre’ property is.

In the Bn theory a surface operator can detect topology provided the corresponding

partitions λ′ and λ′′ are not both rather odd [6]. In the Cn theory a surface operator can

detect topology provided the corresponding partitions λ′ and λ′′ are both special [6]. (Note

the relation with the table in Corollary 6.1.6 in [12].)

In [6] it was argued that the two discrete quantum numbers discussed above should

be interchanged under S-duality, so that if a surface operator can detect topology then its

dual should detect the centre and vice versa.

3 Rigid surface operators in the Bn/Cn theories

In this section we discuss the Bn and Cn theories and try to obtain information about the

S-duality map between the rigid surface operators in these two theories.

3.1 Generating functions

Generating functions proved to be very useful in the works [8, 9]. The generating functions

for the total number of rigid surface operators clearly contains less information than an

explicit S-duality map acting on the rigid surface operators, but they could still prove to

be important as a testing ground in the search for the exact map. We therefore start with

a discussion of the generating functions. In the formulæ below we use the notation

(a, q)k :=

k−1∏

n=0

(1 − aqn) . (3.1)

The total number of rigid unipotent operators in the SO(n) theory is given by the coefficient

in front of qn in (the extra 1 is added for later convenience)

1 +

∞∑

k=1







∞∑

i1=1

i1 6=2

qi1

∞∑

i2=1

q22i2 · · ·
∞∑

i2k−2=1

q2(2k−2)i2k−2







∞∑

i
2k−1

=1

i2k−1 6=2

q(2k−1)i2k−1 +

∞∑

i2k

q2(2k)i2k













= 1 +

∞∑

k=1

q3k2−2k(−q3; q6)k
(q2; q2)2k

≡ f(q) . (3.2)
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Similarly, the total number of rigid unipotent operators in the Sp(2n) theory is given by

the coefficient in front of q2n in (again we added an extra 1)

1 +
∞∑

k=1







∞∑

i1=1

q2i1

∞∑

i2=1

i2 6=2

q2i2 · · ·
∞∑

i2k−2=1

i
2k−2

6=2

q(2k−2)i2k−2







∞∑

i2k−1=1

q2(2k−1)i2k−1 +
∞∑

i2k=1

i
2k

6=2

q2ki2k













= 1 +
∞∑

k=1

q3k2−k(1 − q4k + q6k)(−q6; q6)k
(1 − q2k + q4k)(q2; q2)2k

≡ g(q) . (3.3)

Using the result (3.2), the generating function for the total number of rigid surface operators

(both unipotent and semisimple) in the Bn theories becomes

[
f(q)2 − f(−q)2

]
/4 . (3.4)

Similarly in the Cn case we find using (3.3) the following generating function for the total

number of rigid surface operators (here we multiplied the result by an extra factor of q to

facilitate the comparison with the Bn result)

q
[
g(q)2 + g(q2)

]
/2 . (3.5)

By expanding the above two expressions (3.4) and (3.5) one finds that the difference is

q9 + 2 q11 + 4 q13 + 5 q15 + 9 q17 + 12 q19 + 17 q21 + 23 q23 + · · · (3.6)

and hence there is a discrepancy between the number of rigid surface operators in the Bn

and Cn theories. This discrepancy was first observed in the B4/C4 theories in [6]. From

the above expressions one gets some further insight into the discrepancy. It appears that

(for n ≥ 4) the number of rigid surface operators is larger in the Bn theory as compared

to the Cn theory and that the excess grows with the rank, n. However, the excess number

of states divided by the total number appears to approach zero as n → ∞. This leads

to the hope that only a minor modification is needed to make the numbers match. This

dovetails nicely with the fact that most rigid surface operators do seem to have candidate

duals. The discrepancy is clearly a major problem but we will ignore it for now and try to

identify certain subsets of rigid surface operators and make proposals for how the S-duality

map should acts on these. We will return to the discrepancy issue in section 3.8.

3.2 S-duality map between rigid special unipotent surface operators [6]

In [6] it was proposed that the special rigid unipotent surface operators in the Bn and

Cn theories are related by S-duality. As discussed above, special rigid unipotent surface

operators in the Bn theories are characterised by Young tableaux where all the rows have

an odd number of boxes and the number of rows is also odd. (The tableaux of course

also satisfy the conditions required for them to be rigid.) Special rigid unipotent surface

operators in the Cn theories are described by Young tableaux where all the rows have an

even number of boxes (plus the rigidity conditions).
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The proposed S-duality map (which we will call XS) from the special rigid unipotent

surface operators in the Bn theory to those in the Cn theory acts in the following way [6]

XS : m2nm+1 (m− 1)2nm−1 (m− 2)2nm−2 · · · 2n2 12n1

7→ m2nm (m− 1)2nm−1+2 (m− 2)2nm−2−2 · · · 2n2+2 12n1−2 . (3.7)

Here m has to be odd in order for the first object to be a Bn partition. Furthermore, it is

clear that the map is a bijection so that X−1
S is well defined.

The map (3.7) preserves the rigidity conditions since n2j+1 6= 1 on the Bn side implies

n2j 6= 1 on the Cn side. Note that the map (3.7) is essentially the ‘pC collapse’ described in

section 6.3 in [12] or more precisely the map Sp described above and in [14]. The inverse

operation, X−1
S , is essentially the ‘pB expansion’ also described in section 6.3 in [12].

The matching of the generating functions for the special unipotent surface operators

in the Bn and Cn theories is the equality:

∞∑

k=1

q6k2−8k+3

(q2; q2)2k−1
= q +

∞∑

k=1

q6k2−4k+1(1 − q4k + q8k)

(q2; q2)2k

. (3.8)

In [6] it was checked that the fingerprints and discrete invariants are preserved by the

map. On both sides the fingerprints become

[
· · · 5n5−1 3n3−1 1n1−1 ; · · · 22n4+2 12n2+2

]
. (3.9)

On the Bn side rigid special unipotent surface operators can detect the centre and the

topology. The same is true on the Cn side.

Above we proposed an alternative invariant based on symbols. This invariant can be

calculated on both sides and gives:







0 · · · 0

n2

︷ ︸︸ ︷

1 · · · 1 1 . . . 1 · · ·

1 · · · 1
︸ ︷︷ ︸

n1

1 · · · 1 2 · · · 2
︸ ︷︷ ︸

n3

· · ·






. (3.10)

Note that the jumps in the entries occur on different rows each time. This alternating

behaviour is characteristic of unipotent special surface operators.

It is not entirely obvious that the S-duality map (3.7) is uniquely fixed by the require-

ment that it preserves the invariants. Nevertheless, it is a simple rule and we will assume

that it is the correct map.

3.3 S-duality map for rigid rather odd unipotent surface operators

Above we saw that the special unipotent operators are related by S-duality. In this sub-

section we will discuss another subclass of operators in the Bn theories and identify their

duals. This subclass consists of all Bn operators for which one can detect the centre but

not the topology. From the discussion in section 2.3 we find that surface operators with

these properties are rigid rather odd unipotent surface operators. Such surface operators
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correspond to partitions of the form · · · 5 42n4 3 22n2 1 (note that the number of odd integers

has to be odd for the surface operator to belong to Bn).

We propose the duality map

(· · · 9 82n8 7 62n65 42n4 3 22n2 1 ; ∅)

7→ (· · · 42n8+232n622n4+212n2 ; · · · 42n8+232n622n4+212n2) . (3.11)

We first note that the proposed duals are rigid (including the constraint that even parts

can not appear with multiplicity 2. Furthermore, the duals are special semisimple surface

operators constructed out of two equal partitions. Since the surface operators are special

they can detect the topology and since λ′ = λ′′ they can not detect the centre as required

(cf. section 2.3). Next one can easily calculate the fingerprints on both sides to obtain
[
· · · 6n6 2n2 ; · · · 42n8+222n4+2

]
. (3.12)

The matching of symbols can also be checked:






0 0 · · · 0

n4+1
︷ ︸︸ ︷

2 · · · 2 2 . . . 2 · · ·

2 · · · 2
︸ ︷︷ ︸

n2

2 · · · 2 4 · · · 4
︸ ︷︷ ︸

n6

· · ·







= (3.13)







0 0 · · · 0

n4+1
︷ ︸︸ ︷

1 · · · 1 1 . . . 1 · · ·

1 · · · 1
︸ ︷︷ ︸

n2

1 · · · 1 2 · · · 2
︸ ︷︷ ︸

n6

· · ·







+







0 0 · · · 0

n4+1
︷ ︸︸ ︷

1 · · · 1 1 . . . 1 · · ·

1 · · · 1
︸ ︷︷ ︸

n2

1 · · · 1 2 · · · 2
︸ ︷︷ ︸

n6

· · ·






.

Thus the proposed dual pair passes all consistency checks that we know of.

The check of the matching of symbols is particularly revealing. This is because the

symbol on the Bn side only involves even numbers, and jumps alternate between the two

rows. There is only one way to write it as a sum of two rigid special Cn symbols (recall from

the above discussion, cf. (3.10), that rigid special Cn symbols also have jumps alternating

between the two rows but the jumps only involve a difference of +1 each time). The fact

that the surface operators need to detect topology on the Cn side (since the centre can be

detected on the Bn side), requires the Cn partitions to be special and we can be confident

that we have found the right dual. For this reason the class of rigid rather odd unipotent

operators is in a sense even simpler that the class of special unipotent operators whose

duals where identified in [6] and described above.

The matching of the generating functions of the two dual classes is the equality:

∞∑

k=1

q3k2−2k

(q4; q4)k
= q +

∞∑

k=1

q12k2−8k+1(1 − q8k + q16k)

(q4; q4)2k

. (3.14)

Let us now describe how the map (3.11) acts on the partitions in a way which will

facilitate the generalisation to all rigid unipotent Bn surface operators (not necessarily

special or rather odd). For simplicity we focus on the case 5 42 3 24 1. The Young tableau is

(3.15)
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Let us split this tableau into one tableau constructed from the rows with an odd number

of boxes and one tableau constructed from the rows with an even number of boxes; we get

; (3.16)

Next we apply the map (3.7) to the tableau constructed from the odd rows to obtain

; (3.17)

Thus we arrive at the rigid surface operator (24 14; 24 14) which agrees with the dual pro-

posed above. The general prescription is clear: split the Young tableau into one tableau

constructed from the rows with an odd number of boxes and one constructed from the

rows with an even number of boxes, and then apply the map (3.7) to the tableau with odd

rows. The two tableaux so constructed correspond the two (equal) rigid special symplectic

partitions given in (3.11).

3.4 A proposal for the S-duality map for rigid unipotent operators

From the discussion in the previous two subsections, a natural generalisation of the pro-

posed S-duality map to all unipotent surface operators in the Bn theories now presents

itself: we simply apply the same manipulation rule at the level of Young tableaux that

we did at the end of the previous subsection. First note that this algorithm always gives

a rigid special semisimple surface operator in the Cn theory: The first tableaux (the one

with only odd rows) is always a special rigid partition in some Bk theory and the map (3.7)

turns this into a special partition in the Ck theory. The second partition (the one with only

even rows) already corresponds to a special rigid partition in the Cn−k theory and is left

untouched. The fact that we obtain a special Cn surface operator shows that it can detect

topology on the Cn side which is consistent with the fact that the unipotent Bn surface

operators can detect the centre. Also note that if the Bn tableaux is special (i.e. has only

odd rows) we recover the map proposed in [6].

As an example of the procedure, consider the unipotent B16 operator corresponding

to the partition λ = 542 33 24 13. Applying the proposed map we find

7→ ; (3.18)

i.e. (24 18 , 26 14). This semisimple C16 operator has identical fingerprint and symbol to the

B16 operator we started with.

To check that the proposed map preserves the symbols is not too difficult. This is

because the Young tableau operations we have performed have direct counterparts in the

symbols. Splitting a rigid Young tableau along rows corresponds to splitting the symbol

at the places where the values of the entries jump. In particular, splitting the Young

tableau into sets of even and odd rows corresponds to splitting the symbol into two special

symbols. To see this first note that there can be at most two consecutive jumps within

either of the rows of the symbol before the jump has to switch rows (this follows from the
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orthogonal/symplectic constraint). The splitting into even and odd rows is at points where

the second of two such consequtive jumps occurs. This is best illustrated by an example.

In the above rank 16 tableau (3.18) the splitting of symbols is as in (2.21).

It is also possible to show that the proposed map preserves the fingerprints. This is a

little more involved. The first thing to note is that on the Bn side λ = λeven + λodd and

µ = Sp(λ) = Sp(λodd)+λeven. This result follows from the definition (2.14). Note that the

longest row in a rigid Bn partition always contains an odd number of boxes. The following

two rows are either both of odd length or both of even length. This pairwise pattern then

continues. If the tableau has an even number of rows the row of shortest length has to

be even.

On the Cn side λ′ = XS(λodd) = Sp(λodd) and λ′′ = λeven which implies that µ = λ

since both λ′ and λ′′ are special Cn partitions which means that so is λ ≡ λ′ + λ′′. Since

µ = λ it then follows from the definition of the map τ that τ is −1 only when µi is even

and λ′i is even, i.e. when both λ′i and λ′′i are even.

We need to show that τ is also −1 for the same µi on the Bn side. When µi is even,

either both of the corresponding parts of Sp(λodd) and λeven are odd or they are even. If

both are odd we see from (3.7) that the first two conditions in (2.15) are fulfilled (the third

condition is moot when λ′′ = ∅). Hence τ = +1 for such µi. If both are even it follows

from (3.7) that for the even parts of Sp(λodd) at least one of the corresponding parts of

λodd is different. This implies that we have τ = −1. This is the same result as on the Cn

side, hence the fingerprints are the same.

As already mentioned the fact that theBn unipotent surface operators detect the centre

is consistent with the fact that the proposed duals detect topology. The Bn unipotent

surface operators that detect topology (i.e. the ones that are not rather odd) should have

duals which detect the centre. Here we encounter a puzzle: from the discussion in section 2.3

it seems that some special rigid semisimple Cn operators with λ′ 6= λ′′ do not detect the

centre. If so, this would be problematic for our proposed map. This leads us to suspect, as

was already mentioned in footnote 2, that the arguments in section 2.3 are not completely

correct. On the other hand, if the arguments are correct then we have a more severe

problem since there are in many cases no other possible duals apart from the ones arising

via our proposed map (for instance, this is the case for the surface operators with orbit-

dimension 20 in the rank 6 example listed in the appendix). Another puzzling aspect of a

similar nature is the following. In our proposal, the unipotent rigid Bn surface operators

get mapped into special rigid semisimple Cn surface operators. But, the number of special

rigid semisimple surface operators in the Cn theories is larger than the number of rigid

unipotent surface operators in the Bn theories. This is problematic since we argued in

section 2.3 that the special Cn surface operators detect topology whereas the only Bn

surface operators which detect the centre are the unipotent ones. On the other hand based

only on their fingerprints/symbols the extra rigid special Cn surface operators appear to

have candidate rigid Bn duals.

Turning to the unipotent operators on the Cn side we can make a similar proposal

for the dual of these operators. Starting with the Young tableau corresponding to a rigid

unipotent Cn operator we split it into even-row and odd-row tableaux as in the Bn case.
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(Note that the number of rows in the odd-row tableau is always even.) We then apply

the map X−1
S to the even-row tableau to obtain a Bk tableau (this guarantees that we

reproduce the map in [6] for the special Cn operators). From the odd-row tableaux we

want to obtain a rigid Dn−k partition (since the operation on the even-row tableau gave

us a Bk partition). To accomplish this goal, we apply the following map

YS : m2nm+1 (m− 1)2nm−1 (m− 2)2nm−2 · · · 2n2 12n1

7→ m2nm (m− 1)2nm−1+2 (m− 2)2nm−2−2 · · · 2n2−2 12n1+2 . (3.19)

Here m has to be even in order for the first element to be a Ck partition. This map is very

similar to the map (3.7) and takes a special Ck partition to a special Dk partition (note

that the map preserves the number of boxes). The map (3.19) is simply the ‘pD collapse’

mentioned in section 6.3 in [12]. The inverse map, Y −1
S , is the ‘pC expansion’ (cf. section

6.3 in [12]).

The proposed map therefore takes us from a rigid unipotent Cn surface operator to a

rigid special semisimple surface operator in the Bn theory. Since such a surface operator on

the Bn side is never rather odd we can detect topology on the Bn side which matches the

fact that we can detect the centre on the Cn side. Furthermore, the map maps unipotent

Cn surface operators which can also detect topology (the special unipotent surface opera-

tors) into Bn surface operators which can also detect the centre (special unipotent surface

operators). The proposed S-duality map for unipotent Cn surface operators therefore does

not suffer from the problems mentioned above for the map of Bn unipotent surface opera-

tors, however, in the present case the map is less unique since there is no clear reason why

the semisimple Bn duals should be special.

Again one can check that the symbols match for the proposed dual pairs. The method

is completely analogous to the one used for the unipotent Bn surface operators so we will

not repeat the details.

To verify that the fingerprints also match we first note that the longest two rows in a

rigid Cn partition both contain either an odd number or an even number of boxes. This

pairwise pattern then continues. If the tableau has an odd number of rows the row of

shortest length has to contain an even number of boxes. Since the unipotent Cn partition

is symplectic we have µ = Sp(λ) = λ. It follows from this result that τ is −1 for all even

µi. From the above properties of rigid Cn partitions, it also follows that the corresponding

λeven,i and λodd,i both have to be even. On the Bn side we have λ = X−1
S λeven + YSλodd

and µ = λeven + λodd (which follows from the definitions of XS and YS). As above, when

µi is even we have that the corresponding λeven,i and λodd,i both have to be even. When

λeven,i is even there exists an i such that µi and λi differ, which means that τ is −1 for

such i. This agrees with the Cn result and the fingerprints are therefore the same.

We close this section by pointing out that in [15], section 13.3, Lusztig constructs a map

from unipotent (not necessarily rigid) Bn [Cn] conjugacy classes to special (not necessarily

rigid) Cn [Bn] semisimple conjugacy classes. The map is not described in a very explicit

way. However, in a later work [13] a much more explicit map is constructed. The maps

constructed in section 4.2 of [13] are very similar to the maps we have proposed. But,
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somewhat surprisingly, they are not the same maps since the maps in [13], as far as we can

see, do not preserve the rigidity conditions.

3.5 A proposal for the S-duality map for (ρ ; ρ) Cn surface operators

Semisimple surface operators in the Cn theories for which λ′ and λ′′ are equal can not detect

the centre (see section 2.3 above). Note that n has to be even in order for such surface

operators/partitions to exist. We argued above that the (ρ ; ρ) Cn surface operators which

are also special are dual to the rigid rather odd unipotent surface operators in the Bn

theory. We will now make a proposal for the dual of a general rigid (ρ ; ρ) Cn surface

operator. Since such surface operators can detect neither centre nor topology one expects

the dual to be given by rigid rather odd semisimple operators in the Bn theory since such

operators have the same properties.

Start by splitting the two equal tableaux into even-row and odd-row tableaux as above.

Next apply the map (3.19) to one of the odd-row tableaux and apply the inverse of (3.7)

to the even-row tableau in the other semisimple factor. Then add the altered and unal-

tered even-row tableaux to form one of the two partitions in a semisimple Bn operator.

Finally, do the same to the odd-row tableaux. In other words, the resulting Bn partition

becomes (ρeven + X−1
S ρeven ; ρodd + YSρodd). Note that the first partition is a Bk parti-

tion and the second factor is a Dn−k partition. As an example consider the C14 operator

(4 32 2 12 ; 4 32 2 12). Applying the suggested map we find:

(

;

)

7→

(

+ ; +

)

=



 ;



 (3.20)

i.e. the semisimple B14 operator (5 42 3 22 1 ; 3 22 1) which is rather odd as expected. Note

that if the even-row tableaux ρeven is empty the inverse map (3.7) applied to it gives the

partition 1.

To check that the symbols match one can use the same methods as in previous cases.

The Cn symbol corresponding to λ = ρ+ ρ has entries with only even numbers. This can

be split into two symbols corresponding to rather odd symbols (for which the jumps are

with steps of +2 and alternating between the rows, cf. section 3.3) using the same methods

as in section 3.4 except that now all entries are even.

To verify that the fingerprints agree we start on the Cn side where λ = ρ + ρ and

µ = λ since λ is symplectic (it has only even parts). From this result it follows that τ is

−1 whenever ρi is even.

On the Bn side we have λ = ρ + YSρodd +X−1
S ρeven and µ = ρ+ ρ. When ρi is even

there exists µi which differ from the corresponding λi and therefore τ is −1 for such µi.

When ρi is odd one instead finds that τ is 1. These results agree with the ones on the Cn

side and hence the fingerprints agree.
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Thus the proposed dual pairs passes all consistency checks. However, we note that the

number of rather odd semisimple Bn surface operators is larger than the number of (ρ ; ρ)

non-special surface operators on the Cn side.

3.6 A proposal for the S-duality map for (1; δ) Bn surface operators

Another class of surface operators for which a natural S-duality action exists are the rigid

semisimple Bn surface operators that are of the form (1; δ), i.e. λ′ is a B0 partition (1) and

λ′′ is a Dn partition (δ). The proposed map is similar to the above examples: split the

partition δ into even and odd rows and leave the odd-row tableau unchanged and apply Y −1
S

to the even-row tableau. Form a semisimple Cn surface operator from the resulting two

partitions. This operation gives a semisimple Cn operator where both of the two partitions

have only odd rows.

Note that the above map is consistent with the proposed map for unipotent Cn surface

operators (when δ is special and the dual unipotent Cn operator has only odd rows) as

well as with the map for (ρ ; ρ) Cn surface operators (when δ is rather odd the dual has a

ρ with only odd rows).

The methods used to check that the dual pairs have the same fingerprints are similar

to the previous cases. Note that the longest row in a rigid Dn partition always contains

an even number of boxes. The following two rows are either both of odd length or both

of even length. This pairwise pattern then continues. If the tableau has an even number

of rows the row of shortest length has to be even. On the Bn side λ = 1 + δodd + δeven
and µ = δodd + Y −1

S δeven. On the Cn side λ ≡ λ′ + λ′′ = δodd + Y −1
S δeven and µ = λ. This

implies that whenever δodd,i is even τ is −1. This can be seen to be in agreement with the

Bn result (using the properties of the YS map).

Excluding the case when δ is rather odd, the fact that the surface operators on the Bn

side can detect topology means that on the Cn side the dual surface operators should detect

the centre. Although this is generically the case, it seems that if the analysis in section 2.3

is correct some of the possible duals might not detect the centre. But as already mentioned

in section 3.4 and footnote 2 we suspect that there are probably some misconceptions in

that analysis.

3.7 General semisimple operators: search for an S-duality map

Above we have made some proposals for how the S-duality map should act on certain

subclasses of rigid surface operators. Our proposals include all unipotent rigid surface

operators as well as certain subclasses of rigid semisimple operators. The goal is of course

to extend the analysis to arbitrary rigid semisimple operators. However, it seems that

before such an extension can be found, the reason for the mismatch of the total number

of rigid surface operators in two theories must be resolved. We therefore make some

preliminary comments about the rigid surface operators responsible for the mismatch in

the next subsection.
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3.8 Characterising the operators which seemingly have no dual

We saw in section 3.1 that there is an excess of rigid surface operators in the Bn theories

(when n ≥ 4). One could speculate that it is only the excess surface operators which are

problematic and which do not have duals, but this naive guess is not correct as we will

see below.

We will only attempt a preliminary analysis of which of the surface operators are prob-

lematic; our motivation is that a more thorough understanding of which surface operator

do not have candidate duals might lead to progress.

Our analysis will be based on the assumption that the symbols as defined in section 2.2

are invariants and we therefore start by recalling some pertinent facts. For rigid partitions

of the form · · · 22n21 in the Bn theories the symbols take the form
(

2 · · ·

0 · · ·

)

, (3.21)

whereas for rigid partitions of the form · · · 1n1 with n1 ≥ 3 the symbols take the form
(

1 · · ·

0 · · ·

)

. (3.22)

Similarly in the Dn theories one finds that the symbols take the forms
(

0 · · ·

2 · · ·

)

,

(

0 · · ·

1 · · ·

)

, (3.23)

for rigid partitions of the form · · · 22n21 and · · · 1n1 with n1 ≥ 3, respectively. In the Cn

theories the symbols take the form
(

1 · · ·

0 · · ·

)

,

(

0 · · ·

1 · · ·

)

, (3.24)

for rigid partitions of odd and even length, respectively.

Now consider semisimple surface operator in the Bn theory with symbols
(

2 · · ·

2 · · ·

)

,

(

2 · · ·

1 · · ·

)

,

(

1 · · ·

2 · · ·

)

. (3.25)

Surface operators with such symbols can not have (rigid) Cn duals since in the Cn theory

such symbols can not be constructed from the sum of two symbols of the form (3.24). The

above classes of Bn operators (3.25) correspond to pairs of partitions (λ′, λ′′) where the

length of λ′ is equal to the length of λ′′ plus one, and one (or both) of λ′ and λ′′ is of the

form · · · 22n21.

There are further infinite classes of surface operators that can not have duals, e.g. the

Bn ones that have symbols of the form
(

1 2 · · ·

1 · · ·

)

,

(

0 2 · · ·

1 · · ·

)

,

(

0 1 · · ·

1 2 · · ·

)

. (3.26)
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We will not attempt to classify all symbols which can appear on the Bn side but not on the

Cn side. Such a classification would anyway not be the end of the story since in addition to

such symbols there are also symbols which can arise from two surface operators on the Bn

side but only from one on the Cn side. This is a mismatch of a different type. Examples

of such symbols include
(

1 1 1 · · ·

1 2 · · ·

)

,

(

1 1 1 1 · · ·

1 1 2 · · ·

)

. (3.27)

The above examples have all been cases where there are too many Bn surface operators of

a certain type. Based on the generating functions a natural guess would have been that

this would be the only type of problem. However, perhaps somewhat surprisingly, this is

not true. Starting at rank 10 states appear in the Cn theories which based on their symbols

(and fingerprints) can not have duals in the Bn theories. The first example in this series is

(
24 12 ; 32 2 14

)
, (3.28)

with symbol (

0 1 2 2

1 1 3

)

. (3.29)

Note that there appears to be a relation between (3.28) and the excess problematic B4

surface operator found in [6], namely (14 ; 22 1): the Young tableaux of this surface operator

are obtained by removing the first rows in the two tableaux corresponding to the partitions

in (3.28).

4 The Dn theories

In this section we will very briefly discuss the extension of some of the techniques used in

the Bn/Cn theories to the Dn (i.e. SO(2n)) theories. The discrete invariants are potentially

more restrictive since in this case the centre of Spin(2n) is of order 4, but we will not make

use of them here.

For unipotent Dn operators we propose that the S-dual surface operator is obtained

by splitting the corresponding tableau into even- and odd-row tableaux, applying the map

YS to the odd-row tableau (which corresponds to a Ck partition) and leaving the even-

row tableau unchanged. This operation results in a special semisimple rigid Dn surface

operator. One can check that the fingerprints and symbols are preserved by the map but

we refrain from giving the details here.

As another example consider semisimple rigid Dn surface operators of the form (ρ ; ρ).

We propose the following S-duality map. Split each ρ into even- and odd-row tableaux and

apply YS to one of the odd-row tableau and Y −1
S to one of the even-row tableau. Then

add the unchanged even-row tableau and the transformed even-row tableau and do the

the same for the odd-row tableau. This procedure results in a rigid semisimple rather odd

Dn surface operator. Note that if ρ is rather odd from the beginning then the proposed

map leaves the surface operator unchanged. Again one can check that the fingerprints and

symbols are preserved by the proposed map.
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5 Summary and open problems

In this paper we have made some proposals for how the S-duality map should act on certain

classes of rigid surface operators in the Bn, Cn and Dn theories. In particular, we have

made proposals for all unipotent rigid surface operators as well as for some classes of rigid

semisimple surface operators. Our proposed maps are speculative but their descriptions

are quite simple and uniform. Attemts to continuing the analysis to more general classes

of semisimple surface operators are hampered by the mismatch in the total number of rigid

surface operators in the Bn and Cn theories. Since the Dn theories are self-dual they might

prove to be easier to study. We took some tentative steps towards a classification of the

Bn/Cn rigid surface operators which can not have a dual, but the physical reason for the

mismatch is still unknown. Maybe the weakly rigid surface operators discussed in [6] will

play a role in the resolution. Clearly more work is required; hopefully our constructions

will be helpful in making further progress.
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A Rigid surface operators in the SO(13) and Sp(12) theories

Below we list (with no particular ordering) all rigid surface operators in the Sp(12) and

SO(13) theories. These tables illustrate the results in this paper. The first column lists the

pair of partitions corresponding to the surface operator, the second column the dimension,

the third the symbol, and the fourth the fingerprint.

(112 ; ∅) 0

(
0 0 0 0 0 0 0

1 1 1 1 1 1

)

[16 ; ∅]

(2 110 ; ∅) 12

(
1 1 1 1 1 1

0 0 0 0 0

)

[15 ; 1]

(110 ; 12) 20

(
0 0 0 0 0 0

1 1 1 1 2

)

[2 14 ; ∅]

(23 16 ; ∅) 30

(
1 1 1 1 1

0 0 0 1

)

[13 ; 13]

(2 18 ; 12) 30

(
1 1 1 1 1

0 0 0 1

)

[13 ; 13]

(18 ; 14) 32

(
0 0 0 0 0

1 1 2 2

)

[22 12 ; ∅]

(24 14 ; ∅) 36

(
0 0 0 1 1

1 1 1 1

)

[12 ; 14]

(18 ; 2 12) 36

(
0 0 0 1 1

1 1 1 1

)

[12 ; 14]

(16 ; 16) 36

(
0 0 0 0

2 2 2

)

[23 ; ∅]

(25 12 ; ∅) 40

(
1 1 1 1

0 1 1

)

[1 ; 15]
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(2 16 ; 14) 40

(
1 1 1 1

0 1 1

)

[1 ; 15]

(16 ; 2 14) 42

(
0 1 1 1

1 1 1

)

[∅ ; 16]

(32 2 14 ; ∅) 44

(
1 1 1 1

0 0 2

)

[3 12 ; 1]

(23 14 ; 12) 44

(
1 1 1 1

0 0 2

)

[3 12 ; 1]

(2 16 ; 2 12) 44

(
1 1 2 2

0 0 0

)

[2 12 ; 2]

(24 12 ; 12) 48

(
0 0 1 1

1 1 2

)

[3 1 ; 12]

(2 14 ; 2 14) 48

(
2 2 2

0 0

)

[22 ; 2]

(23 12 ; 14) 50

(
1 1 1

1 2

)

[3 ; 13]

(23 12 ; 2 12) 54

(
1 2 2

0 1

)

[3 1 ; 2]

(32 2 12 ; 12) 54

(
1 1 1

0 3

)

[4 1 ; 1]

(113; ∅) 0

(
0 0 0 0 0 0 0

1 1 1 1 1 1

)

[16; ∅]

(1; 112) 12

(
1 1 1 1 1 1

0 0 0 0 0

)

[15; 1]

(22 19; ∅) 20

(
0 0 0 0 0 0

1 1 1 1 2

)

[2 14; ∅]

(1; 22 18) 30

(
1 1 1 1 1

0 0 0 1

)

[13; 13]

(13; 110) 30

(
1 1 1 1 1

0 0 0 1

)

[13; 13]

(24 15; ∅) 32

(
0 0 0 0 0

1 1 2 2

)

[22 12; ∅]

(3 22 16; ∅) 36

(
0 0 0 1 1

1 1 1 1

)

[12; 14]

(19, 14) 36

(
0 0 0 1 1

1 1 1 1

)

[12; 14]

(26 1; ∅) 36

(
0 0 0 0

2 2 2

)

[23; ∅]

(1; 24 14) 40

(
1 1 1 1

0 1 1

)

[1; 15]

(15; 18) 40

(
1 1 1 1

0 1 1

)

[1; 15]

(17; 16) 42

(
0 1 1 1

1 1 1

)

[∅; 16]

(13; 2 17) 44

(
1 1 1 1

0 0 2

)

[3 12; 1]

(22 1; 18) 44

(
1 1 1 1

0 0 2

)

[3 12; 1]

(1; 3 22 15) 44

(
1 1 2 2

0 0 0

)

[2 12; 2]

(A.1)
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(2215; 14) 48

(
0 0 1 1

1 1 2

)

[3 1; 12]

(1; 3 24 1) 48

(
2 2 2

0 0

)

[22; 2]

(2213; 16) 50

(
1 1 1

1 2

)

[3; 13]

(15; 22 14) 50

(
1 1 1

1 2

)

[3; 13]

(24 1; 14) 52

(
0 1 1

2 2

)

[32; ∅]

(13; 3 22 13) 54

(
1 2 2

0 1

)

[3 1; 2]

(22 1; 22 14) 54

(
1 1 1

0 3

)

[4 1; 1]

(15; 3 22 1) 56

(
0 2 2

1 1

)

[3; 2 1]

(22 1; 3 22 1) 60

(
2 2

2

)

[∅; 23]
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[13] D. Hézard, Sur le support unipotent des faisceaux-caractères, PhD Thesis (2004) available at:

http://tel.archives-ouvertes.fr/tel-00012071.

[14] N. Spaltenstein, Order relations on conjugacy classes and the Kazhdan-Lusztig map, Math.

Ann. 292 (1992) 281.

[15] G. Lusztig, Characters of reductive groups over a finite field, Princeton (1984).

– 27 –

http://dx.doi.org/10.1016/S0550-3213(01)00291-7
http://arxiv.org/abs/hep-th/0103047
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103047
http://tel.archives-ouvertes.fr/tel-00012071

	Introduction
	Surface operators in N=4 super-Yang-Mills
	Some mathematical definitions and results
	Invariants of surface operators: dimension, fingerprints and symbols
	Invariants of surface operators: centre and topology

	Rigid surface operators in the B(n)/C(n) theories
	Generating functions
	[6]
	S-duality map for rigid rather odd unipotent surface operators 
	A proposal for the S-duality map for rigid unipotent operators 
	A proposal for the S-duality map for (rho; rho) C(n) surface operators 
	A proposal for the S-duality map for (1; de) B(n) surface operators 
	General semisimple operators: search for an S-duality map
	Characterising the operators which seemingly have no dual

	The D(n) theories 
	Summary and open problems
	Rigid surface operators in the SO(13) and Sp(12) theories

